475 research outputs found

    The long QT syndromes: genetic basis and clinical implications

    Get PDF
    AbstractIt is becoming clear that mutations in the KVLQT1, human “ether-a-go-go” related gene, cardiac voltage-dependent sodium channel gene, minK and MiRP1 genes, respectively, are responsible for the LQT1, LQT2, LQT3, LQT5 and LQT6 variants of the Romano-Ward syndrome, characterized by autosomal dominant transmission and no deafness. The much rarer Jervell-Lange-Nielsen syndrome (with marked QT prolongation and sensorineural deafness) arises when a child inherits mutant KVLQT1 or minK alleles from both parents. In addition, some families are not linked to the known genetic loci. Cardiac voltage-dependent sodium channel gene encodes the cardiac sodium channel, and long QT syndrome (LQTS) mutations prolong action potentials by increasing inward plateau sodium current. The other mutations cause a decrease in net repolarizing current by reducing potassium currents through “dominant negative” or “loss of function” mechanisms. Polymorphic ventricular tachycardia (torsade de pointes) is thought to be initiated by early after- depolarizations in the Purkinje system and maintained by reentry in the myocardium. Clinical presentations vary with the specific gene affected and the specific mutation. Nevertheless, patients with identical mutations can also present differently, and some patients with LQTS mutations may have no manifest baseline phenotype. The question of whether the latter situation is one of high risk for administration of QT prolonging drugs or during myocardial ischemia is under active investigation. More generally, the identification of LQTS genes has provided tremendous new insights for our understanding of normal cardiac electrophysiology and its perturbation in a wide range of conditions associated with sudden death. It seems likely that the approach of applying information from the genetics of uncommon congenital syndromes to the study of common acquired diseases will be an increasingly important one in the next millennium

    Deixando de Ser Uma Reaçao

    Get PDF

    Deixando de Ser Uma Reaçao

    Get PDF

    Pharmacogenomics: Challenges and Opportunities

    Get PDF
    The outcome of drug therapy is often unpredictable, ranging from beneficial effects to lack of efficacy to serious adverse effects. Variations in single genes are 1 well-recognized cause of such unpredictability, defining the field of pharmacogenetics (see Glossary). Such variations may involve genes controlling drug metabolism, drug transport, disease susceptibility, or drug targets. The sequencing of the human genome and the cataloguing of variants across human genomes are the enabling resources for the nascent field of pharmacogenomics (see Glossary), which tests the idea that genomic variability underlies variability in drug responses. However, there are many challenges that must be overcome to apply rapidly accumulating genomic information to understand variable drug responses, including defining candidate genes and pathways; relating disease genes to drug response genes; precisely defining drug response phenotypes; and addressing analytic, ethical, and technological issues involved in generation and management of large drug response data sets. Overcoming these challenges holds the promise of improving new drug development and ultimately individualizing the selection of appropriate drugs and dosages for individual patients

    Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further insight into the evolution of electrical signaling in vertebrates, we investigated beta subunit genes in the teleost <it>Danio rerio </it>(zebrafish).</p> <p>Results</p> <p>We identified and cloned single zebrafish gene homologs for beta1-beta3 (<it>zbeta1-zbeta3</it>) and duplicate genes for beta4 (<it>zbeta4.1, zbeta4.2</it>). Sodium channel beta subunit loci are similarly organized in fish and mammalian genomes. Unlike their mammalian counterparts, <it>zbeta1 </it>and <it>zbeta2 </it>subunit genes display extensive alternative splicing. Zebrafish beta subunit genes and their splice variants are differentially-expressed in excitable tissues, indicating tissue-specific regulation of <it>zbeta1-4 </it>expression and splicing. Co-expression of the genes encoding zbeta1 and the zebrafish sodium channel alpha subunit Na<sub>v</sub>1.5 in Chinese Hamster Ovary cells increased sodium current and altered channel gating, demonstrating functional interactions between zebrafish alpha and beta subunits. Analysis of the synteny and phylogeny of mammalian, teleost, amphibian, and avian beta subunit and related genes indicated that all extant vertebrate beta subunits are orthologous, that beta2/beta4 and beta1/beta3 share common ancestry, and that beta subunits are closely related to other proteins sharing the V-type immunoglobulin domain structure. Vertebrate sodium channel beta subunit genes were not identified in the genomes of invertebrate chordates and are unrelated to known subunits of the <it>para </it>sodium channel in <it>Drosophila</it>.</p> <p>Conclusion</p> <p>The identification of conserved orthologs to all 4 voltage-gated sodium channel beta subunit genes in zebrafish and the lack of evidence for beta subunit genes in invertebrate chordates together indicate that this gene family emerged early in vertebrate evolution, prior to the divergence of teleosts and tetrapods. The evolutionary history of sodium channel beta subunits suggests that these genes may have played a key role in the diversification and specialization of electrical signaling in early vertebrates.</p

    Exaggerated QT prolongation after cardioversion of atrial fibrillation

    Get PDF
    AbstractOBJECTIVESThe purpose of this study was to test the hypothesis that the extent of drug-induced QT prolongation by dofetilide is greater in sinus rhythm (SR) after cardioversion compared with during atrial fibrillation (AF).BACKGROUNDAnecdotes suggest that when action potential–prolonging antiarrhythmic drugs are used for AF, excessive QT prolongation and torsades de pointes (TdP) often occur shortly after sinus rhythm is restored.METHODSQT was measured in nine patients with AF who received two identical infusions of dofetilide: 1) before elective direct current cardioversion and 2) within 24 h of restoration of SR.RESULTSDuring AF, dofetilide did not prolong QT (baseline: 368 ± 48 ms vs. drug: 391 ± 60, p = NS) whereas during SR, QT was prolonged from 405 ± 55 to 470 ± 67 ms (p < 0.01). In four patients (group I), the SR dofetilide infusion was terminated early because QT prolonged to >500 ms, and one patient developed asymptomatic nonsustained TdP. The remaining five patients (group II) received the entire dose during SR. Although ΔQT was greater in group I during SR (91 ± 22 vs. 45 ± 25 ms, p < 0.05), plasma dofetilide concentrations during SR were similar in the two groups (2.72 ± 0.96 vs. 2.77 ± 0.25 ng/ml), and in AF (2.76 ± 1.22 ng/ml). ΔQT in SR correlated inversely with baseline SR heart rate (r = −0.69, p < 0.05), and QT dispersion developing during the infusion (r = 0.79, p < 0.01).CONCLUSIONSShortly after restoration of SR, there was increased sensitivity to QT prolongation by this IKr-specific blocker. Slower heart rates after cardioversion and QT dispersion during treatment appear to be important predictors of this response

    Electrophysiologic actions of high plasma concentrations of propranolol in human subjects

    Get PDF
    The authors have previously shown that 40% of patients whose ventricular arrhythmias respond to propranolol require plasma concentrations in excess of those producing substantial beta-receptor blockade (> 150 ng/ml). However, the electrophysiologic actions of propranolol have only been examined in human beings after small intravenous doses achieving concentrations of less than 100 ng/ml. In this study, the electrophysiologic effects of a wider concentration range of propranolol was examined in nine patients. Using a series of loading and maintenance infusions, measurements were made at baseline, at low mean plasma propranolol concentrations (104 ± 17 ng/ml) and at high concentrations (472 ± 68 ng/ml). Significant (p < 0.05) increases in AH interval and sinus cycle length were seen at low concentrations of propranolol, with no further prolongation at the high concentrations; these effects are typical of those produced by beta-blockade. However, progressive shortening of the endocardial monophasic action potential duration and QTc interval were seen over the entire concentration range tested (p < 0.05). At high concentrations, there was significant (p < 0.05) further shortening of both the QTc and monophasic action potential duration beyond that seen at low propranolol concentrations, along with a progressive increase in the ratio of the ventricular effective refractory period to monophasic action potential duration. No significant changes were seen in HV interval, QRS duration or ventricular effective refractory period.In summary, the concentration-response relations for atrioventricular conductivity and sinus node automat-icity were flat above concentrations of 150 ng/ml. On the other hand, the durations of the monophasic action potential and the QTc interval shortened at high concentrations. It is concluded that propranolol, in addition to blocking beta-receptors, produces other beta-receptor independent electrophysiologic effects in human beings

    An analytical approach to characterize morbidity profile dissimilarity between distinct cohorts using electronic medical records

    Get PDF
    AbstractWe describe a two-stage analytical approach for characterizing morbidity profile dissimilarity among patient cohorts using electronic medical records. We capture morbidities using the International Statistical Classification of Diseases and Related Health Problems (ICD-9) codes. In the first stage of the approach separate logistic regression analyses for ICD-9 sections (e.g., “hypertensive disease” or “appendicitis”) are conducted, and the odds ratios that describe adjusted differences in prevalence between two cohorts are displayed graphically. In the second stage, the results from ICD-9 section analyses are combined into a general morbidity dissimilarity index (MDI). For illustration, we examine nine cohorts of patients representing six phenotypes (or controls) derived from five institutions, each a participant in the electronic MEdical REcords and GEnomics (eMERGE) network. The phenotypes studied include type II diabetes and type II diabetes controls, peripheral arterial disease and peripheral arterial disease controls, normal cardiac conduction as measured by electrocardiography, and senile cataracts

    Enabling genomic-phenomic association discovery without sacrificing anonymity

    Get PDF
    Health information technologies facilitate the collection of massive quantities of patient-level data. A growing body of research demonstrates that such information can support novel, large-scale biomedical investigations at a fraction of the cost of traditional prospective studies. While healthcare organizations are being encouraged to share these data in a de-identified form, there is hesitation over concerns that it will allow corresponding patients to be re-identified. Currently proposed technologies to anonymize clinical data may make unrealistic assumptions with respect to the capabilities of a recipient to ascertain a patients identity. We show that more pragmatic assumptions enable the design of anonymization algorithms that permit the dissemination of detailed clinical profiles with provable guarantees of protection. We demonstrate this strategy with a dataset of over one million medical records and show that 192 genotype-phenotype associations can be discovered with fidelity equivalent to non-anonymized clinical data
    • 

    corecore